Distribution of Serotypes and Antimicrobial Resistance Genes among Streptococcus agalactiae Isolates from Bovine and Human Hosts

Author:

Dogan Belgin1,Schukken Y. H.2,Santisteban C.2,Boor Kathryn J.1

Affiliation:

1. Department of Food Science, Cornell University, Ithaca, New York 14853

2. Quality Milk Production Services, Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853

Abstract

ABSTRACT To better understand the emergence and transmission of antibiotic-resistant Streptococcus agalactiae , we compared phenotypic and genotypic characteristics of 52 human and 83 bovine S. agalactiae isolates. Serotypes found among isolates from human hosts included V (48.1%), III (19.2%), Ia and Ib (13.5% each), and II (5.8%). Among isolates from bovine hosts, molecular serotypes III and II were predominant (53 and 14.5%, respectively). Four and 21 different ribotypes were found among human and bovine isolates, respectively. A combination of ribotyping and serotyping showed that two bovine isolates were indistinguishable from human isolates. Resistance to tetracycline and erythromycin was more common among human (84.6% and 26.9%, respectively) than bovine (14.5% and 3.6%, respectively) isolates. tetM was found in all tetracycline-resistant human isolates, while tetO was the predominant resistance gene among bovine isolates. tet genes were found among various ribotypes. ermB , ermTR , and mefA were detected among erythromycin-resistant human isolates, while ermB was the only erythromycin resistance determinant among isolates from bovine hosts. For isolates from human hosts, erythromycin resistance genes appeared to be associated with specific ribotypes. We conclude that (i) human and bovine S. agalactiae isolates represent distinct populations; (ii) human host-associated S. agalactiae subtypes may occasionally be transmitted to bovines; (iii) while emergence of erythromycin and tetracycline resistance appears to largely occur independently among human and bovine isolates, occasional cross-species transfer of resistant strains or transmission of resistance genes between human- and bovine-associated subtypes may occur; and (iv) dissemination of antibiotic-resistant S. agalactiae appears to include both clonal spread of resistant strains as well as horizontal gene transfer.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3