Characterization of Esterase A, a Pseudomonas stutzeri A15 Autotransporter

Author:

Nicolay Toon1,Devleeschouwer Ken1,Vanderleyden Jos1,Spaepen Stijn1

Affiliation:

1. Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, Belgium

Abstract

ABSTRACT Autotransporters are a widespread family of proteins, generally known as virulence factors produced by Gram-negative bacteria. In this study, the esterase A (EstA) autotransporter of the rice root-colonizing beneficial bacterium Pseudomonas stutzeri A15 was characterized. A multiple sequence alignment identified EstA as belonging to clade II of the GDSL esterase family. Autologous overexpression allowed the investigation of several features of both autotransporter proteins and GDSL esterases. First, the correctly folded autotransporter was shown to be present in the membrane fraction. Unexpectedly, after separation of the membrane fraction, EstA was detected in the N -laurylsarcosine soluble fraction. However, evidence is presented for the surface exposure of EstA based on fluorescent labeling with EstA specific antibodies. Another remarkable feature is the occurrence of a C-terminal leucine residue instead of the canonical phenylalanine or tryptophan residue. Replacement of this residue with a phenylalanine residue reduced the stability of the β-barrel. Regarding the esterase passenger domain, we show the importance of the catalytic triad residues, with the serine and histidine residues being more critical than the aspartate residue. Furthermore, the growth of an estA -negative mutant was not impaired and cell mobility was not disabled compared to the wild type. No specific phenotype was detected for an estA -negative mutant. Overall, P. stutzeri A15 EstA is a new candidate for the surface display of proteins in environmentally relevant biotechnological applications.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3