Chlamydia muridarum Infection Elicits a Beta Interferon Response in Murine Oviduct Epithelial Cells Dependent on Interferon Regulatory Factor 3 and TRIF

Author:

Derbigny Wilbert A.12,Hong Soon-Cheol2,Kerr Micah S.1,Temkit M'hamed3,Johnson Raymond M.1

Affiliation:

1. Department of Medicine

2. Department of Microbiology Immunology

3. Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana 46202

Abstract

ABSTRACT Chlamydia trachomatis is the most common sexually transmitted bacterial infection in the United States. Utilizing cloned murine oviduct epithelial cell lines, we previously identified Toll-like receptor 2 (TLR2) as the principal epithelial pattern recognition receptor (PRR) for infection-triggered release of the acute inflammatory cytokines interleukin-6 and granulocyte-macrophage colony-stimulating factor. The infected oviduct epithelial cell lines also secreted the immunomodulatory cytokine beta interferon (IFN-β) in a largely MyD88-independent manner. Although TLR3 was the only IFN-β production-capable TLR expressed by the oviduct cell lines, we were not able to determine whether TLR3 was responsible for IFN-β production because the epithelial cells were unresponsive to the TLR3 ligand poly(I-C), and small interfering RNA (siRNA) techniques were ineffective at knocking down TLR3 expression. To further investigate the potential role of TLR3 in the infected epithelial cell secretion of IFN-β, we examined the roles of its downstream signaling molecules TRIF and IFN regulatory factor 3 (IRF-3) using a dominant-negative TRIF molecule and siRNA specific for TRIF and IRF-3. Antagonism of either IRF-3 or TRIF signaling significantly decreased IFN-β production. These data implicate TLR3, or an unknown PRR utilizing TRIF, as the source of IFN-β production by Chlamydia -infected oviduct epithelial cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3