Control of Ammonium Permease Expression and Filamentous Growth by the GATA Transcription Factors GLN3 and GAT1 in Candida albicans

Author:

Dabas Neelam1,Morschhäuser Joachim1

Affiliation:

1. Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany

Abstract

ABSTRACT In response to nitrogen starvation, the human fungal pathogen Candida albicans switches from yeast to filamentous growth. This morphogenetic switch is controlled by the ammonium permease Mep2p, whose expression is induced under limiting nitrogen conditions. In order to understand in more detail how nitrogen starvation-induced filamentous growth is regulated in C. albicans , we identified the cis -acting sequences in the MEP2 promoter that mediate its induction in response to nitrogen limitation. We found that two putative binding sites for GATA transcription factors have a central role in MEP2 expression, as deletion of the region containing these sites or mutation of the GATAA sequences in the full-length MEP2 promoter strongly reduced MEP2 expression. To investigate whether the GATA transcription factors GLN3 and GAT1 regulate MEP2 expression, we constructed mutants of the C. albicans wild-type strain SC5314 lacking one or both of these transcription factors. Expression of Mep2p was strongly reduced in gln3 Δ and gat1 Δ single mutants and abolished in gln3 Δ gat1 Δ double mutants. Deletion of GLN3 strongly inhibited filamentous growth under limiting nitrogen conditions, but the filamentation defect of gln3 Δ mutants could be rescued by constitutive expression of MEP2 from the ADH1 promoter. In contrast, inactivation of GAT1 had no effect on filamentation, and we found that filamentation became independent of the presence of a functional MEP2 gene in the gat1 Δ mutants, indicating that the loss of GAT1 function results in the activation of other pathways inducing filamentous growth. These results demonstrate that the GATA transcription factors GLN3 and GAT1 control expression of the MEP2 ammonium permease and that GLN3 is also an important regulator of nitrogen starvation-induced filamentous growth in C. albicans .

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3