Effects of Larval Mosquitoes ( Aedes triseriatus ) and Stemflow on Microbial Community Dynamics in Container Habitats

Author:

Kaufman Michael G.1,Walker Edward D.2,Smith Tracy W.2,Merritt Richard W.2,Klug Michael J.1

Affiliation:

1. W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060,1 and

2. Department of Entomology, Michigan State University, East Lansing, Michigan 488242

Abstract

ABSTRACT The dynamics of the microbial food sources for Aedes triseriatus larvae in microcosms were found to be strongly influenced by larval presence. The total abundance of bacteria in water samples generally increased in response to larvae, including populations of cultivable, facultatively anaerobic bacteria. Additionally, a portion of the community shifted from Pseudomonaceae to Enterobacteriaceae . Bacterial abundance on leaf material was significantly reduced in the presence of actively feeding larvae. Principle-component analysis of whole community fatty acid methyl ester (FAME) profiles showed that larvae changed the microbial community structure in both the water column and the leaf material. Cyclopropyl FAMEs, typically associated with bacteria, were reduced in microcosms containing larvae; however, other bacterial fatty acids showed no consistent response. Long-chain polyunsaturated fatty acids characteristic of microeukaryotes (protozoans and meiofauna) declined in abundance when larvae were present, indicating that larval feeding reduced the densities of these microorganisms. However, presumed fungal lipid markers either increased or were unchanged in response to larvae. Larval presence also affected microbial nitrogen metabolism through modification of the physiochemical conditions or by grazing on populations of bacteria involved in nitrification-denitrification. Stemflow primarily influenced inorganic ion and organic compound concentrations in the microcosms and had less-pronounced effects on microbial community parameters than did larval presence. Stemflow treatments diluted concentrations of all inorganic ions (chloride, sulfate, and ammonium) and organic compounds (total dissolved organic carbon, soluble carbohydrates, and total protein) measured, with the exceptions of nitrite and nitrate. Stemflow addition did not measurably affect larval biomass in the microcosms but did enhance development rates and early emergence patterns of adults.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3