Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human alpha-cardiac actin gene

Author:

Miwa T1,Kedes L1

Affiliation:

1. MEDIGEN Project, Department of Medicine, Stanford University School of Medicine, Palo Alto.

Abstract

An upstream region from the transcription initiation site to -177 base pairs (bp) of the human alpha-cardiac actin gene directs the transient expression of a bacterial chloramphenicol acetyltransferase (CAT) gene only in muscle cells (A. Minty and L. Kedes, Mol. Cell. Biol. 6:2125-2136, 1986). We modified this promoter region by additional 5' deletions, linker-scanning mutations, and insertion-deletion mutations and demonstrated that the asymmetrical sequences in and adjacent to two CArG [for CC(A + T rich)6GG] motifs, located at -140 and -100 bp, play an important positive role in transcription. The significant impairment of transcriptional activity that accompanies the disruption of one CArG box region can be restored by either. This demonstrated that these two elements interact in a mutually dependent and similar manner. Furthermore, a DNA fragment that includes the CArG boxes had significant competitive activity for transcription directed by the alpha-cardiac actin promoter in an in vivo competition assay. We conclude that the two sequences around each CArG box may interact with the same class of trans-acting positive factor(s) and that these interactions may mediate muscle-specific expression. Each of the two CArG regions appears to be bound independently by such a positive factor(s), and the regions support high-level transcription in a synergistic manner. The transcriptional activity of this regulatory region is proportional to its distance from a TATA box (at -30 bp) and is strictly orientation dependent relative to the direction of transcription. Therefore this upstream region is not an enhancer but is a tissue-specific regulatory upstream element.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3