An exhaustive multiple knockout approach to understanding cell wall hydrolase function in Bacillus subtilis

Author:

Wilson Sean A.12ORCID,Tank Raveen K. J.3,Hobbs Jamie K.3,Foster Simon J.4ORCID,Garner Ethan C.12ORCID

Affiliation:

1. Department of Molecular and Cellular Biology, Harvard University , Cambridge, Massachusetts, USA

2. Center for Systems Biology, Harvard University , Cambridge, Massachusetts, USA

3. Department of Physics and Astronomy, University of Sheffield , Sheffield, United Kingdom

4. School of Biosciences, University of Sheffield , Sheffield, United Kingdom

Abstract

ABSTRACT Most bacteria are surrounded by their cell wall, containing a highly cross-linked protective envelope of peptidoglycan. To grow, bacteria must continuously remodel their wall, inserting new material and breaking old bonds. Bond cleavage is performed by cell wall hydrolases, allowing the wall to expand. Understanding the functions of individual hydrolases has been impeded by their redundancy: single knockouts usually present no phenotype. We used an exhaustive multiple-knockout approach to determine the minimal set of hydrolases required for growth in Bacillus subtilis . We identified 42 candidate hydrolases. Strikingly, we were able to remove all but two of these genes in a single strain; this “∆40” strain shows only a mild reduction in growth rate, indicating that none of the 40 hydrolases are necessary for growth. The ∆40 strain does not detectably shed old wall, suggesting that turnover is not essential for growth. The remaining hydrolases in the ∆40 strain are LytE and CwlO, previously shown to be synthetically lethal. Either can be removed in ∆40, indicating that either hydrolase alone is sufficient for cell growth. Screening of environmental conditions and biochemistry revealed that LytE activity is inhibited by Mg 2+ and that RlpA-like proteins may stimulate LytE activity. Together, these results suggest that the only essential function of cell wall hydrolases in B . subtilis is to enable cell growth by expanding the wall and that LytE or CwlO alone are sufficient for this function. These experiments introduce the ∆40 strain as a tool to study hydrolase activity and regulation in B. subtilis . IMPORTANCE In order to grow, bacterial cells must both create and break down their cell wall. The enzymes that are responsible for these processes are the target of some of our best antibiotics. Our understanding of the proteins that break down the wall— cell wall hydrolases—has been limited by redundancy among the large number of hydrolases many bacteria contain. To solve this problem, we identified 42 cell wall hydrolases in Bacillus subtilis and created a strain lacking 40 of them. We show that cells can survive using only a single cell wall hydrolase; this means that to understand the growth of B. subtilis in standard laboratory conditions, it is only necessary to study a very limited number of proteins, simplifying the problem substantially. We additionally show that the ∆40 strain is a research tool to characterize hydrolases, using it to identify three “helper” hydrolases that act in certain stress conditions.

Funder

HHS | National Institutes of Health

Volkswagen Foundation

Wellcome Trust

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3