Coenzyme A biosynthesis in Bacillus subtilis : discovery of a novel precursor metabolite for salvage and its uptake system

Author:

Warneke Robert1ORCID,Herzberg Christina1ORCID,Klein Moritz2ORCID,Elfmann Christoph1ORCID,Dittmann Josi1ORCID,Feussner Kirstin23ORCID,Feussner Ivo2ORCID,Stülke Jörg1ORCID

Affiliation:

1. Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany

2. Department of Plant Biochemistry, Albrecht-von-Haller Institute and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany

3. Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany

Abstract

ABSTRACT The Gram-positive model bacterium Bacillus subtilis is used for many biotechnological applications, including the large-scale production of vitamins. For vitamin B5, a precursor for coenzyme A synthesis, there is so far no established fermentation process available, and the metabolic pathways that involve this vitamin are only partially understood. In this study, we have elucidated the complete pathways for the biosynthesis of pantothenate and coenzyme A in B. subtilis . Pantothenate can not only be synthesized but also be taken up from the medium. We have identified the enzymes and the transporter involved in the pantothenate biosynthesis and uptake. High-affinity vitamin B5 uptake in B. subtilis requires an ATP-driven energy coupling factor transporter with PanU (previously YhfU) as the substrate-specific subunit. Moreover, we have identified a salvage pathway for coenzyme A acquisition that acts on complex medium even in the absence of pantothenate synthesis. This pathway requires rewiring of sulfur metabolism resulting in the increased expression of a cysteine transporter. In the salvage pathway, the bacteria import cysteinopantetheine, a novel naturally occurring metabolite, using the cystine transport system TcyJKLMN. This work lays the foundation for the development of effective processes for vitamin B5 and coenzyme A production using B. subtilis . IMPORTANCE Vitamins are essential components of the diet of animals and humans. Vitamins are thus important targets for biotechnological production. While efficient fermentation processes have been developed for several vitamins, this is not the case for vitamin B5 (pantothenate), the precursor of coenzyme A. We have elucidated the complete pathway for coenzyme A biosynthesis in the biotechnological workhorse Bacillus subtilis . Moreover, a salvage pathway for coenzyme A synthesis was found in this study. Normally, this pathway depends on pantetheine; however, we observed activity of the salvage pathway on complex medium in mutants lacking the pantothenate biosynthesis pathway even in the absence of supplemented pantetheine. This required rewiring of metabolism by expressing a cystine transporter due to acquisition of mutations affecting the regulation of cysteine metabolism. This shows how the hidden “underground metabolism” can give rise to the rapid formation of novel metabolic pathways.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3