Human GBP1 facilitates the rupture of the Legionella- containing vacuole and inflammasome activation

Author:

Bass Antonia R.1ORCID,Egan Marisa S.1,Alexander-Floyd Jasmine1,Lopes Fischer Natasha1,Doerner Jessica1,Shin Sunny1ORCID

Affiliation:

1. Department of Microbiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania, USA

Abstract

ABSTRACT The inflammasome is essential for host defense against intracellular bacterial pathogens, including Legionella pneumophila , the causative agent of the severe pneumonia Legionnaires’ disease. Inflammasomes recruit and activate caspases, which promote IL-1 family cytokine release and pyroptosis to restrict infection. In mice, interferon (IFN) signaling promotes inflammasome responses against L. pneumophila and other bacteria , in part, through inducing a family of IFN-inducible GTPases known as guanylate-binding proteins (GBPs). Within murine macrophages, IFN promotes the rupture of the L. pneumophila -containing vacuole (LCV), while GBPs are dispensable for vacuole rupture. Instead, GBPs facilitate the lysis of cytosol-exposed L. pneumophila . In contrast, the functions of IFN-γ and GBPs in human inflammasome responses to L. pneumophila are poorly understood. Here, we show that IFN-γ enhances caspase-1- and caspase-4-dependent inflammasome responses to L. pneumophila in human macrophages. We find that human GBP1 is required for these IFN-γ-driven inflammasome responses. Furthermore, we find that GBP1 co-localizes with L. pneumophila and/or LCVs in a type IV secretion system (T4SS)-dependent manner and facilitates damage to the LCV, resulting in increased bacterial access to the host cell cytosol. Our findings reveal species- and pathogen-specific differences in how GBPs function during infection. Importance Inflammasomes are essential for host defense against intracellular bacterial pathogens like Legionella , as they activate caspases, which promote cytokine release and cell death to control infection. In mice, interferon (IFN) signaling promotes inflammasome responses against bacteria by inducing a family of IFN-inducible GTPases known as guanylate-binding proteins (GBPs). Within murine macrophages, IFN promotes the rupture of the Legionella -containing vacuole (LCV), while GBPs are dispensable for this process. Instead, GBPs facilitate the lysis of cytosol-exposed Legionella . In contrast, the functions of IFN and GBPs in human inflammasome responses to Legionella are poorly understood. We show that IFN-γ enhances inflammasome responses to Legionella in human macrophages. Human GBP1 is required for these IFN-γ-driven inflammasome responses. Furthermore, GBP1 co-localizes with Legionella and/or LCVs in a type IV secretion system (T4SS)-dependent manner and promotes damage to the LCV, which leads to increased exposure of the bacteria to the host cell cytosol. Thus, our findings reveal species- and pathogen-specific differences in how GBPs function to promote inflammasome responses.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Burroughs Wellcome Fund

National Science Foundation

Howard Hughes Medical Institute

HHS | NIH | National Institute of General Medical Sciences

American Heart Association

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3