Effect of Neisseria meningitidis Fur Mutations on Global Control of Gene Transcription

Author:

Delany Isabel1,Grifantini Renata1,Bartolini Erika1,Rappuoli Rino1,Scarlato Vincenzo12

Affiliation:

1. Chiron Vaccines, Via Fiorentina 1, 53100 Siena, Italy

2. Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy

Abstract

ABSTRACT The ferric uptake regulator Fur is a well-known iron-responsive repressor of gene transcription, which is used by many bacteria to respond to the low-iron environment that pathogens encounter during infection. In this study we used comparative transcriptome analysis to define the role of the Fur protein in the global control of gene transcription and iron regulation in Neisseria meningitidis . By using the Fur-null mutant and its complemented derivative, we identified 83 genes whose transcription is controlled by Fur. We report that Fur may control differential expression of these genes by binding directly to their promoters or through indirect mechanisms. In addition, mutation of the fur gene resulted in the induction of the heat shock response, and transcription of these genes does not respond to iron limitation. Furthermore, analysis of the iron starvation stimulon in the Fur-null mutant provided evidences of iron-responsive regulation that is independent of Fur. We began to dissect the regulatory networks of Fur and the heat shock (stress) response in N. meningitidis , and the observed interlink between the two circuits is discussed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3