Probing the Mechanism of Inactivation of the FOX-4 Cephamycinase by Avibactam

Author:

Nukaga Michiyoshi1,Papp-Wallace Krisztina M.234,Hoshino Tyuji5,Lefurgy Scott T.6,Bethel Christopher R.2,Barnes Melissa D.23,Zeiser Elise T.2,Johnson J. Kristie7,Bonomo Robert A.2389

Affiliation:

1. Department of Pharmaceutical Sciences, Josai International University, Togane City, Chiba, Japan

2. Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA

3. Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA

4. Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA

5. Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan

6. Department of Chemistry, Hofstra University, Hempstead, New York, USA

7. Department of Pathology, University of Maryland, Baltimore, Maryland, USA

8. Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA

9. Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA

Abstract

ABSTRACT Ceftazidime-avibactam is a “second-generation” β-lactam–β-lactamase inhibitor combination that is effective against Enterobacteriaceae expressing class A extended-spectrum β-lactamases, class A carbapenemases, and/or class C cephalosporinases. Knowledge of the interactions of avibactam, a diazabicyclooctane with different β-lactamases, is required to anticipate future resistance threats. FOX family β-lactamases possess unique hydrolytic properties with a broadened substrate profile to include cephamycins, partly as a result of an isoleucine at position 346, instead of the conserved asparagine found in most AmpCs. Interestingly, a single amino acid substitution at N346 in the Citrobacter AmpC is implicated in resistance to the aztreonam-avibactam combination. In order to understand how diverse active-site topologies affect avibactam inhibition, we tested a panel of clinical Enterobacteriaceae isolates producing bla FOX using ceftazidime-avibactam, determined the biochemical parameters for inhibition using the FOX-4 variant, and probed the atomic structure of avibactam with FOX-4. Avibactam restored susceptibility to ceftazidime for most isolates producing bla FOX ; two isolates, one expressing bla FOX-4 and the other producing bla FOX-5 , displayed an MIC of 16 μg/ml for the combination. FOX-4 possessed a k 2 / K value of 1,800 ± 100 M −1 · s −1 and an off rate ( k off ) of 0.0013 ± 0.0003 s −1 . Mass spectrometry showed that the FOX-4–avibactam complex did not undergo chemical modification for 24 h. Analysis of the crystal structure of FOX-4 with avibactam at a 1.5-Å resolution revealed a unique characteristic of this AmpC β-lactamase. Unlike in the Pseudomonas -derived cephalosporinase 1 (PDC-1)–avibactam crystal structure, interactions (e.g., hydrogen bonding) between avibactam and position I346 in FOX-4 are not evident. Furthermore, another residue is not observed to be close enough to compensate for the loss of these critical hydrogen-bonding interactions. This observation supports findings from the inhibition analysis of FOX-4; FOX-4 possessed the highest K d (dissociation constant) value (1,600 nM) for avibactam compared to other AmpCs (7 to 660 nM). Medicinal chemists must consider the properties of extended-spectrum AmpCs, such as the FOX β-lactamases, for the design of future diazabicyclooctanes.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

U.S. Department of Veterans Affairs Biomedical Laboratory Research and Development Service

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3