The Human I-mfa Domain-Containing Protein, HIC, Interacts with Cyclin T1 and Modulates P-TEFb-Dependent Transcription

Author:

Young Tara M.12,Wang Qi12,Pe'ery Tsafi132,Mathews Michael B.12

Affiliation:

1. Departments of Biochemistry and Molecular Biology

2. Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07013-2714

3. Medicine, New Jersey Medical School

Abstract

ABSTRACT Positive transcription elongation factor b (P-TEFb) hyperphosphorylates the carboxy-terminal domain of RNA polymerase II, permitting productive transcriptional elongation. The cyclin T1 subunit of P-TEFb engages cellular transcription factors as well as the human immunodeficiency virus type 1 (HIV-1) transactivator Tat. To identify potential P-TEFb regulators, we conducted a yeast two-hybrid screen with cyclin T1 as bait. Among the proteins isolated was the human I-mfa domain-containing protein (HIC). HIC has been reported to modulate expression from both cellular and viral promoters via its C-terminal cysteine-rich domain, which is similar to the inhibitor of MyoD family a (I-mfa) protein. We show that HIC binds cyclin T1 in yeast and mammalian cells and that it interacts with intact P-TEFb in mammalian cell extracts. The interaction involves the I-mfa domain of HIC and the regulatory histidine-rich region of cyclin T1. HIC also binds Tat via its I-mfa domain, although the sequence requirements are different. HIC colocalizes with cyclin T1 in nuclear speckle regions and with Tat in the nucleolus. Expression of the HIC cDNA modulates Tat transactivation of the HIV-1 long terminal repeat (LTR) in a cell type-specific fashion. It is mildly inhibitory in CEM cells but stimulates gene expression in HeLa, COS, and NIH 3T3 cells. The isolated I-mfa domain acts as a dominant negative inhibitor. Activation of the HIV-1 LTR by HIC in NIH 3T3 cells occurs at the RNA level and is mediated by direct interactions with P-TEFb.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3