Members of the Large Maf Transcription Family Regulate Insulin Gene Transcription in Islet β Cells

Author:

Matsuoka Taka-aki1,Zhao Li1,Artner Isabella1,Jarrett Harry W.2,Friedman David3,Means Anna4,Stein Roland1

Affiliation:

1. Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center

2. Department of Biochemistry, University of Tennessee, Memphis, Tennessee 38163

3. Department of Biochemistry

4. Department of Surgical Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

Abstract

ABSTRACT The C1/RIPE3b1 (−118/−107 bp) binding factor regulates pancreatic-β-cell-specific and glucose-regulated transcription of the insulin gene. In the present study, the C1/RIPE3b1 activator from mouse βTC-3 cell nuclear extracts was purified by DNA affinity chromatography and two-dimensional gel electrophoresis. C1/RIPE3b1 binding activity was found in the roughly 46-kDa fraction at pH 7.0 and pH 4.5, and each contained N- and C-terminal peptides to mouse MafA as determined by peptide mass mapping and tandem spectrometry. MafA was detected in the C1/RIPE3b1 binding complex by using MafA peptide-specific antisera. In addition, MafA was shown to bind within the enhancer region (−340/−91 bp) of the endogenous insulin gene in βTC-3 cells in the chromatin immunoprecipitation assay. These results strongly suggested that MafA was the β-cell-enriched component of the RIPE3b1 activator. However, reverse transcription-PCR analysis demonstrated that mouse islets express not only MafA but also other members of the large Maf family, specifically c-Maf and MafB. Furthermore, immunohistochemical studies revealed that at least MafA and MafB were present within the nuclei of islet β cells and not within pancreas acinar cells. Because MafA, MafB, and c-Maf were each capable of specifically binding to and activating insulin C1 element-mediated expression, our results suggest that all of these factors play a role in islet β-cell function.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3