A Vaginal Tract Signal Detected by the Group B Streptococcus SaeRS System Elicits Transcriptomic Changes and Enhances Murine Colonization

Author:

Cook Laura C. C.1,Hu Hong2,Maienschein-Cline Mark2,Federle Michael J.1

Affiliation:

1. Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA

2. Core for Research Informatics, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA

Abstract

ABSTRACT Streptococcus agalactiae (group B streptococcus [GBS]) can colonize the human vaginal tract, leading to both superficial and serious infections in adults and neonates. To study bacterial colonization of the reproductive tract in a mammalian system, we employed a murine vaginal carriage model. Using transcriptome sequencing (RNA-Seq), the transcriptome of GBS growing in vivo during vaginal carriage was determined. Over one-quarter of the genes in GBS were found to be differentially regulated during in vivo colonization compared to laboratory cultures. A two-component system (TCS) homologous to the staphylococcal virulence regulator SaeRS was identified as being upregulated in vivo . One of the SaeRS targets, pbsP , a proposed GBS vaccine candidate, is shown to be important for colonization of the vaginal tract. A component of vaginal lavage fluid acts as a signal to turn on pbsP expression via SaeRS. These data demonstrate the ability to quantify RNA expression directly from the murine vaginal tract and identify novel genes involved in vaginal colonization by GBS. They also provide more information about the regulation of an important virulence and colonization factor of GBS, pbsP , by the TCS SaeRS.

Funder

Chicago Biomedical Consortium

HHS | National Institutes of Health

Burroughs Wellcome Fund

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3