Affiliation:
1. Institut de Biologie Moléculaire des Plantes du CNRS et de l'Université Louis Pasteur, 67084 Strasbourg, France
Abstract
ABSTRACT
Higher plants employ a homology-dependent RNA-degradation system known as posttranscriptional gene silencing (PTGS) as a defense against virus infection. Several plant viruses are known to encode proteins that can suppress PTGS. Here we show that P0 of beet western yellows virus (BWYV) displays strong silencing suppressor activity in a transient expression assay based upon its ability to inhibit PTGS of green fluorescent protein (GFP) when expressed in agro-infiltrated leaves of
Nicotiana benthamiana
containing a GFP transgene. PTGS suppressor activity was also observed for the P0s of two other poleroviruses, cucurbit aphid-borne yellows virus and potato leafroll virus. P0 is encoded by the 5′-proximal gene in BWYV RNA but does not accumulate to detectable levels when expressed from the genome-length RNA during infection. The low accumulation of P0 and the resulting low PTGS suppressor activity are in part a consequence of the suboptimal translation initiation context of the P0 start codon in viral RNA, although other factors, probably related to the viral replication process, also play a role. A mutation to optimize the P0 translation initiation efficiency in BWYV RNA was not stable during virus multiplication in planta. Instead, the P0 initiation codon in the progeny was frequently replaced by a less efficient initiation codon such as ACG, GTG, or ATA, indicating that there is selection against overexpression of P0 from the viral genome.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
197 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献