Given the Opportunity, the Sendai Virus RNA-Dependent RNA Polymerase Could as Well Enter Its Template Internally

Author:

Vulliémoz Diane1,Roux Laurent1

Affiliation:

1. Department of Genetics and Microbiology, University of Geneva Medical School, 1211 Geneva 4, Switzerland

Abstract

ABSTRACT The negative-stranded RNA viral genome is an RNA-protein complex of helicoidal symmetry, resistant to nonionic detergent and high salt, in which the RNA is protected from RNase digestion. The 15,384 nucleotides of the Sendai virus genome are bound to 2,564 subunits of the N protein, each interacting with six nucleotides so tightly that the bases are poorly accessible to soluble reagents. With such a uniform structure, the question of template recognition by the viral RNA polymerase has been raised. In a previous study, the N-phase context has been proposed to be crucial for this recognition, a notion referring to the importance of the position in which the nucleotides interact with the N protein. The N-phase context ruled out the role of the template 3′-OH congruence, a feature resulting from the obedience to the rule of six that implies the precise interaction of the last six 3′-OH nucleotides with the last N protein. The N-phase context then allows prediction of the recognition by the RNA polymerase of a replication promoter sequence even if internally positioned, a promoter which normally lies at the template extremity. In this study, with template minireplicons bearing tandem replication promoters separated by intervening sequences, we present data that indeed show that initiation of RNA synthesis takes place at the internal promoter. This internal initiation can best be interpreted as the result of the polymerase entering the template at the internal promoter. In this way, the data are consistent with the importance of the N-phase context in template recognition. Moreover, by introducing between the two promoters a stretch of 10 A residues which represent a barrier for RNA synthesis, we found that the ability of the RNA polymerase to cross this barrier depends on the type of replication promoter, strong or weak, that the RNA polymerase starts on, a sign that the RNA polymerase may be somehow imprinted in its activity by the nature of the promoter on which it starts synthesis.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3