Human Immunodeficiency Virus Type 1 (HIV-1) Accessory Protein Vpr Induces Transcription of the HIV-1 and Glucocorticoid-Responsive Promoters by Binding Directly to p300/CBP Coactivators

Author:

Kino Tomoshige1,Gragerov Alexander2,Slobodskaya Olga2,Tsopanomichalou Maria2,Chrousos George P.1,Pavlakis George N.2

Affiliation:

1. Pediatric and Reproductive Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1583

2. Human Retrovirus Section, Center for Cancer Research, National Cancer Institute—Frederick, Frederick, Maryland 21702-1201

Abstract

ABSTRACT The accessory Vpr protein of human immunodeficiency virus type 1 (HIV-1) is a promiscuous activator of viral and cellular promoters. We report that Vpr enhances expression of the glucocorticoid receptor-induced mouse mammary tumor virus (MMTV) promoter and of the Tat-induced HIV-1 long terminal repeat promoter by directly binding to p300/CBP coactivators. In contrast, Vpr does not bind to p/CAF or to members of the p160 family of nuclear receptor coactivators, such as steroid receptor coactivator 1a and glucocorticoid receptor (GR)-interacting protein 1. Vpr forms a stable complex with p300 and also interacts with the ligand-bound glucocorticoid receptor in vivo. Mutation analysis showed that the C-terminal part of Vpr binds to the C-terminal portion of p300/CBP within amino acids 2045 to 2191. The same p300 region interacts with the p160 coactivators and with the adenovirus E1A protein. Accordingly, E1A competed for binding to p300 in vitro. Coexpression of E1A or of small fragments of p300 containing the Vpr binding site resulted in inhibition of Vpr's transcriptional effects. The C-terminal part of p300 containing the transactivating region is required for Vpr transactivation, whereas the histone acetyltransferase enzymatic region is dispensable. Vpr mutants that bind p300 but not the GR did not activate expression of the MMTV promoter and had dominant-negative effects. These results indicate that Vpr activates transcription by acting as an adapter linking transcription components and coactivators.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3