Rotavirus Genome Segment 7 (NSP3) Is a Determinant of Extraintestinal Spread in the Neonatal Mouse

Author:

Mossel Eric C.1,Ramig Robert F.1

Affiliation:

1. Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030

Abstract

ABSTRACT We used the neonatal mouse model of rotavirus infection to study extraintestinal spread following oral inoculation. Five-day-old pups were inoculated with either SA11-Cl3, SA11-Cl4, SA11-4F, RRV, or B223. By using virus detection in the liver as a proxy determination for extraintestinal spread, rotavirus strains capable of extraintestinal spread at high frequency (rhesus rotavirus [RRV]) and very low frequency (SA11-Cl4) were identified. Both strains productively infected the gastrointestinal tract. Oral inoculation of mice with RRV/ SA11-Cl4 reassortants and determination of virus titers in the gut and liver revealed that the extraintestinal spread phenotype segregated with RRV genome segment 7 to a high level of significance ( P = 10 −3 ). RRV segment 7 also segregated with the growth of virus in the gut ( P = 10 −5 ). Although infection of the gut was clearly required for tropism to the liver, there was no correlation between virus titers in the gut and detection of virus in the liver. Five days after intraperitoneal administration to bypass the gut barrier to virus spread, RRV and SA11-Cl4 both were recovered in the liver. However, only RRV was found in the liver following subcutaneous inoculation, suggesting that this peripheral site presented a similar barrier to virus spread as the gut. Sequence analysis of segment 7 from parental RRV and SA11-Cl4 and selected reassortants showed that (i) amino acid differences were distributed throughout the coding sequences and not concentrated in any particular functional motif and (ii) parental sequence was preserved in reassortants. These data support the hypothesis that NSP3, coded for by genome segment 7, plays a significant role in viral growth in the gut and spread to peripheral sites. The mechanism of NSP3-mediated tropism is under investigation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3