Affiliation:
1. Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin
Abstract
ABSTRACT
Open reading frame (ORF) Mm2058 of the methanogenic archaeon
Methanosarcina mazei
strain Gö1 was shown in vivo and in vitro to encode the nonorthologous replacement of the α-ribazole-phosphate phosphatase (CobC; EC 3.1.3.73) enzyme of
Salmonella enterica
serovar Typhimurium LT2. Bioinformatics analysis of sequences available in databases tentatively identified ORF Mm2058, which was cloned under the control of an inducible promoter and was used to support growth of an
S. enterica
strain under conditions that demanded CobC-like activity. The Mm2058 protein was expressed with a decahistidine tag at its N terminus and was purified to homogeneity using nickel affinity chromatography. High-performance liquid chromatography followed by electrospray ionization mass spectrometry showed that the Mm2058 protein had phosphatase activity that converted α-ribazole-5′-phosphate to α-ribazole, as reported for the bacterial CobC enzyme. On the basis of the data reported here, we refer to ORF Mm2058 as
cobZ
. We tested the prediction by Rodionov et al. (D. A. Rodionov, A. G. Vitreschak, A. A. Mironov, and M. S. Gelfand, J. Biol. Chem.
278:
41148-41159, 2003) that ORF HSL01294 (also called Vng1577) encoded the nonorthologous replacement of the bacterial CobC enzyme in the extremely halophilic archaeon
Halobacterium
sp. strain NRC-1. A strain of the latter carrying an in-frame deletion of ORF Vng1577 was not a cobalamin auxotroph, suggesting that either there is redundancy of this function in
Halobacterium
or the gene was misannotated.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献