Author:
Cerutti H,Johnson A M,Boynton J E,Gillham N W
Abstract
The occurrence of homologous DNA recombination in chloroplasts is well documented, but little is known about the molecular mechanisms involved or their biological significance. The endosymbiotic origin of plastids and the recent finding of an Arabidopsis nuclear gene, encoding a chloroplast-localized protein homologous to Escherichia coli RecA, suggest that the plastid recombination system is related to its eubacterial counterpart. Therefore, we examined whether dominant negative mutants of the E. coli RecA protein can interfere with the activity of their putative homolog in the chloroplast of the unicellular green alga Chlamydomonas reinhardtii. Transformants expressing these mutant RecA proteins showed reduced survival rates when exposed to DNA-damaging agents, deficient repair of chloroplast DNA, and diminished plastid DNA recombination. These results strongly support the existence of a RecA-mediated recombination system in chloroplasts. We also found that the wild-type E. coli RecA protein enhances the frequency of plastid DNA recombination over 15-fold, although it has no effect on DNA repair or cell survival. Thus, chloroplast DNA recombination appears to be limited by the availability of enzymes involved in strand exchange rather than by the level of initiating DNA substrates. Our observations suggest that a primary biological role of the recombination system in plastids is in the repair of their DNA, most likely needed to cope with damage due to photooxidation and other environmental stresses. This hypothesis could explain the evolutionary conservation of DNA recombination in chloroplasts despite the predominantly uniparental inheritance of their genomes.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献