Minimum Requirements for Efficient Transduction of Dividing and Nondividing Cells by Feline Immunodeficiency Virus Vectors

Author:

Johnston Julie C.1,Gasmi Mehdi1,Lim Leland E.2,Elder John H.3,Yee Jiing-Kuan1,Jolly Douglas J.1,Campbell Kevin P.2,Davidson Beverly L.4,Sauter Sybille L.1

Affiliation:

1. Center for Gene Therapy, Chiron Technologies, San Diego, California 921211;

2. Howard Hughes Medical Institute and Departments of Physiology and Biophysics and Neurology, University of Iowa College of Medicine,2 and

3. Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 920373

4. Department of Internal Medicine, University of Iowa,4 Iowa City, Iowa 52242; and

Abstract

ABSTRACT The development of gene delivery vectors based on feline immunodeficiency virus (FIV) is an attractive alternative to vectors based on primate sources for the delivery of genes into humans. To investigate the requirements for efficient transduction of dividing and nondividing cells by vector particles based on FIV, a series of packaging and vector constructs was generated for which viral gene expression was minimized and from which unnecessary cis -acting sequences were deleted. Pseudotyped vector particles produced in 293T cells were used to transduce various target cells, including contact-inhibited human skin fibroblasts and growth-arrested HT1080 cells. FIV vectors in which the U3 promoter was replaced with the cytomegalovirus promoter gave rise to over 50-fold-higher titers than FIV vectors containing the complete FIV 5′ long terminal repeat (LTR). Comparison of the transduction efficiencies of vectors containing different portions of the FIV Gag coding region indicates that at least a functional part of the FIV packaging signal (Ψ) is located within an area which includes the 5′ LTR and the first 350 bp of gag . Transduction efficiencies of vectors prepared without FIV vif and orf2 accessory gene expression did not differ substantially from those of vectors prepared with accessory gene expression in either dividing or nondividing cells. The requirement for FIV rev -RRE was, however, demonstrated by the inefficient production of vector particles in the absence of rev expression. Together, these results demonstrate the efficient transduction of nondividing cells in vitro by a multiply attenuated FIV vector and contribute to an understanding of the minimum requirements for efficient vector production and infectivity. In addition, we describe the ability of an FIV vector to deliver genes in vivo into hamster muscle tissue.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3