Viral Immediate-Early Proteins Abrogate the Modification by SUMO-1 of PML and Sp100 Proteins, Correlating with Nuclear Body Disruption

Author:

Müller Stefan1,Dejean Anne1

Affiliation:

1. Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France

Abstract

ABSTRACT PML nuclear bodies (NBs) are subnuclear structures whose integrity is compromised in certain human diseases, including leukemia and neurodegenerative disorders. Infection by a number of DNA viruses similarly triggers the reorganization of these structures, suggesting an important role for the NBs in the viral infection process. While expression of the adenovirus E4 ORF3 protein leads to only a moderate redistribution of PML to filamentous structures, the herpes simplex virus (HSV) ICP0 protein and the cytomegalovirus (CMV) IE1 protein both induce a complete disruption of the NB structure. Recently, we and others have shown that the NB proteins PML and Sp100 are posttranslationally modified by covalent linkage with the ubiquitin-related SUMO-1 protein and that this modification may promote the assembly of these structures. Here we show that the HSV ICP0 and CMV IE1 proteins specifically abrogate the SUMO-1 modification of PML and Sp100, whereas the adenovirus E4 ORF3 protein does not affect this process. The potential of ICP0 and IE1 to alter SUMO-1 modification is directly linked to their capacity to disassemble NBs, thus strengthening the role for SUMO-1 conjugation in maintenance of the structural integrity of the NBs. This observation supports a model in which ICP0 and IE1 disrupt the NBs either by preventing the formation or by degrading of the SUMO-1-modified PML and Sp100 protein species. Finally, we show that the IE1 protein itself is a substrate for SUMO-1 modification, thus representing the first viral protein found to undergo this new type of posttranslational modification.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 243 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3