Simian Immunodeficiency Virus Disease Course Is Predicted by the Extent of Virus Replication during Primary Infection

Author:

Staprans Silvija I.12,Dailey Peter J.3,Rosenthal Ann4,Horton Chris1,Grant Robert M.2,Lerche Nicholas4,Feinberg Mark B.5

Affiliation:

1. Department of Medicine—AIDS Program, University of California, San Francisco, San Francisco, California 941101;

2. Gladstone Institute of Virology and Immunology, San Francisco, California 94141-91002;

3. Nucleic Acid Diagnostics, Chiron Diagnostics (D-200), Emeryville, California 946083;

4. California Regional Primate Research Center, University of California, Davis, California 956164; and

5. Departments of Medicine and Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 303225

Abstract

ABSTRACT To elucidate the relationship between early viral infection events and immunodeficiency virus disease progression, quantitative-competitive and branched-DNA methods of simian immunodeficiency virus (SIV) RNA quantitation were cross-validated and used to measure viremia following infection of rhesus macaques with the pathogenic SIVmac251 virus isolate. Excellent correlation between the methods suggests that both accurately approximate SIV copy number. Plasma viremia was evident 4 days postinfection, and rapid viral expansion led to peak viremia levels of 10 7 to 10 9 SIV RNA copies/ml by days 8 to 17. Limited resolution of primary viremia was accompanied by relatively short, though variable, times to the development of AIDS (81 to 630 days). The persistent high-level viremia observed following intravenous inoculation of SIVmac251 explains the aggressive disease course in this model. Survival analyses demonstrated that the disease course is established 8 to 17 days postinfection, when peak viremia is observed. The most significant predictor of disease progression was the extent of viral decline following peak viremia; larger decrements in viremia were associated with both lower steady-state viremia ( P = 0.0005) and a reduced hazard of AIDS ( P = 0.004). The data also unexpectedly suggested that following SIVmac251 infection, animals with the highest peak viremia were better able to control virus replication rather than more rapidly developing disease. Analysis of early viral replication dynamics should help define host responses that protect from disease progression and should provide quantitative measures to assess the extent to which protective responses may be induced by prophylactic vaccination.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3