Induction of urokinase-type plasminogen activator by UV light in human fetal fibroblasts is mediated through a UV-induced secreted protein.

Author:

Rotem N,Axelrod J H,Miskin R

Abstract

Plasminogen activator was previously shown to be induced by UV light in human cells with low capacity to repair UV-induced DNA lesions. We now show that in human fetal fibroblasts UV light enhanced the two mRNA species coding for the urokinase-type plasminogen activator (uPA) and the tissue-type plasminogen activator, but immunological analysis revealed exclusively uPA activity. Several independent and complementary experiments indicated that induction of uPA was mediated, apparently entirely, through a UV-induced, secreted protein (UVIS) in the growth medium of irradiated cells. First, elevation of uPA mRNA after irradiation was severely blocked by cycloheximide. Second, replacement of conditioned medium in irradiated cells while the rate of plasminogen activator induction was maximal rapidly and completely stopped any further increase in uPA activity. Third, addition of the same removed conditioned medium to nonirradiated cells mimicked UV light in enhancing the level of uPA activity as well as that of uPA mRNA. Fourth, UVIS activity was completely lost by treating the conditioned medium with trypsin but not with nucleases. Kinetic measurements indicated that the accumulation of UVIS rather than the induction of uPA by UVIS conferred the rate-limiting step in the overall process of uPA induction. Both UV light and UVIS acted synergistically with inhibitors of DNA repair for uPA induction. Based on these results, a model is proposed implicating relaxation of DNA torsional stress of an as yet undefined DNA sequence(s) in the induction of UVIS, which is then responsible for activation of the uPA gene.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3