Immunopathologic Alterations in Murine Models of Sepsis of Increasing Severity

Author:

Ebong Samuel1,Call Douglas1,Nemzek Jean1,Bolgos Gerald1,Newcomb David1,Remick Daniel1

Affiliation:

1. Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0602

Abstract

ABSTRACT We investigated inflammatory and physiologic parameters in sepsis models of increasing lethality induced by cecal ligation and puncture (CLP). Mice received imipenem for antibiotic therapy, and groups were sacrificed at 2, 4, 8, 12, 16, 20, and 24 h after CLP. The severity of sepsis increased with needle puncture size (lethality with 18-gauge puncture [18G], 100%; 21G, 50%; 25G, 5%; sham treatment, 0%). While the temperature (at 12 h) and the activity and diurnal rhythm (at day 4) of the 25G-treated CLP group recovered to normal, the 21G and 18G treatment groups exhibited severe hypothermia along with decreased activities. A direct correlation was also observed between the severity of sepsis and cytokine (interleukin 1β [IL-1β], tumor necrosis factor [TNF], IL-6, and IL-10) concentrations in both the peritoneum and the plasma. There were substantially higher cytokine levels in the more severe CLP models than in the sham-treated one. Peritoneal and plasma TNF levels were always less than 40 pg/ml in all models. None of the cytokines in the septic mice peaked within the first hour, which is in contrast to the results of most endotoxin models. Chemokine (KC and macrophage inflammatory protein 2) profiles also correlated with the severity of sepsis. Except for the chemokines, levels of inflammatory mediators were always higher at the site of inflammation (peritoneum) than in the circulation. Our study demonstrated that sepsis of increasing severity induced increased cytokine levels both within the local environment (peritoneum) and systemically (plasma), which in turn correlated with morbidity and mortality.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3