Acquisition of Plasmin Activity by Fusobacterium nucleatum subsp. nucleatum and Potential Contribution to Tissue Destruction during Periodontitis

Author:

Darenfed H.1,Grenier D.1,Mayrand D.2

Affiliation:

1. Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire,1

2. et Faculté des Sciences et de Génie,2 Université Laval, Cité Universitaire, Québec, Canada G1K 7P4

Abstract

ABSTRACT Fusobacterium nucleatum subsp. nucleatum has been associated with a variety of oral and nonoral infections such as periodontitis, pericarditis, bone infections, and brain abscesses. Several studies have shown the role of plasmin, a plasma serine protease, in increasing the invasive capacity of microorganisms. In this study, we investigated the binding of human plasminogen to F. nucleatum subsp. nucleatum , and its subsequent activation into plasmin. Plasminogen-binding activity of bacterial cells was demonstrated by a solid-phase dot blot assay using an anti-plasminogen antibody. The binding activity was heat resistant and involved cell-surface lysine residues since it was abolished in the presence of the lysine analog ɛ-aminocaproic acid. Activation of plasminogen-coated bacteria occurred following incubation with either streptokinase, urokinase-type plasminogen activator (u-PA), or a Porphyromonas gingivalis culture supernatant. In the case of the P. gingivalis culture supernatant, a cysteine protease was likely involved in the activation. The plasmin activity generated on the cell surface of F. nucleatum subsp. nucleatum could be inhibited by aprotinin. Activation of plasminogen by u-PA was greatly enhanced when plasminogen was bound to bacteria rather than in a free soluble form. u-PA-activated plasminogen-coated F. nucleatum subsp. nucleatum was found to degrade fibronectin, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Tissue inhibitor of metalloproteinase-1 was also degraded by the plasmin activity generated on the bacterial cells. This study suggests a possible role for plasminogen, which is present in affected periodontal sites, in promoting tissue destruction and invasion by nonproteolytic bacteria such as F. nucleatum subsp. nucleatum .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference33 articles.

1. Fusobacteria: new taxonomy and related diseases;Bennett K. W.;J. Med. Microbiol.,1993

2. Role of matrix metalloproteinases in human periodontal diseases;Birkedal-Hansen H.;J. Periodontol.,1993

3. Purification and reaction mechanism of the primary inhibitor of plasmin from human plasma;Christensen U.;J. Biochem.,1974

4. Borrelia burgdorferi binds plasminogen, resulting in enhanced penetration of endothelial monolayers

5. On the regulation and control of fibrinolysis;Collen D.;Thromb. Haemostasis,1980

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3