Proteophosphoglycan, a Major Secreted Product of Intracellular Leishmania mexicana Amastigotes, Is a Poor B-Cell Antigen and Does Not Elicit a Specific Conventional CD4 + T-Cell Response

Author:

Aebischer Toni1,Harbecke Dorothee1,Ilg Thomas1

Affiliation:

1. Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, D-72076 Tübingen, Germany

Abstract

ABSTRACT Secreted and surface-exposed antigens of intracellular pathogens are thought to provide target structures for detection by the host immune system. The major secreted product of intracellular Leishmania mexicana amastigotes, a proteophosphoglycan (aPPG), is known to contribute to the establishment of the parasitophorous vacuole and is able to activate complement. aPPG belongs to a novel class of serine- and threonine-rich Leishmania proteins that are extensively modified by phosphodiester-linked phosphooligosaccharides and terminal mannooligosaccharides. Here we show that mice chronically infected with L. mexicana generally do not produce antibodies or Th cells specific for aPPG. Similarly, antibody titers are very low in mice vaccinated with aPPG, and specific CD4 + T cells are undetectable. Comparative analyses of other Leishmania glycoconjugates indicate that L. mexicana -specific carbohydrate structures are poorly immunogenic in mice and that the proteophosphoglycan aPPG behaved immunologically like a carbohydrate. The latter observation is explained by the lack of induction of aPPG-specific CD4 + T cells. In contrast, recombinant aPPG peptides stimulate CD4 + T-cell responses and high titers of specific antibodies are found in the sera of mice vaccinated with these peptides. Native aPPG is highly resistant to proteinases and apparently cannot be degraded by macrophages. It is concluded that conventional CD4 + T cells against the polypeptide backbone of aPPG are not induced because the molecule resists antigen processing due to its extensive and complex carbohydrate modification. The complex glycan chains of aPPG, which exhibit important biological functions for the parasite, may therefore also have evolved to evade detection by the immune system of the host organism.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3