Laccase Protects Cryptococcus neoformans from Antifungal Activity of Alveolar Macrophages

Author:

Liu Lide1,Tewari Ram P.2,Williamson Peter R.1

Affiliation:

1. Division of Infectious Diseases, University of Illinois at Chicago, Chicago, Illinois 60612,1 and

2. Department of Microbiology and Immunology, Southern Illinois University, Springfield, Illinois 627022

Abstract

ABSTRACT While laccase of Cryptococcus neoformans is implicated in the virulence of the organism, our recent studies showing absence of melanin in the infected mouse brain has led us to a search for alternative roles for laccase in cryptococcosis. We investigated the role of laccase in protection of C. neoformans against murine alveolar macrophage (AM)-mediated antifungal activity by using a pair of congenic laccase-positive (2E-TUC) and laccase-deficient (2E-TU) strains. The laccase-positive cells with laccase derepression were more resistant to the antifungal activity of AM than a laccase-deficient strain ([28.9 ± 1.2]% versus [40.2 ± 2.6]% killing). Addition of l -dopa to Cryptococcus to produce melanin in a laccase-positive strain resulted in a slight increase in protection of C. neoformans from the antifungal activity of macrophages ([25.4 ± 3.4]% versus [28.9 ± 1.2]% killing). Recombinant cryptococcal laccase exhibited iron oxidase activity in converting Fe(II) to Fe(III). Moreover, recombinant laccase inhibited killing of C. neoformans by hydroxyl radicals catalyzed by iron in a cell-free system. Addition of the hydroxyl radical scavenger mannitol or dimethyl sulfoxide to AMs prior to the introduction of cryptococcal cells decreased killing of both strains and reduced the difference in susceptibility between the laccase-positive and laccase-deficient strains. Furthermore, laccase-mediated protection from AM killing was inhibited by the addition of Fe(II), presumably by overcoming the effects of the iron oxidase activity of cryptococcal laccase. These results suggest that the iron oxidase activity of laccase may protect C. neoformans from macrophages by oxidation of phagosomal iron to Fe(III) with a resultant decrease in hydroxyl radical formation.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3