Alternative Mechanism of Cholera Toxin Acquisition by Vibrio cholerae : Generalized Transduction of CTXΦ by Bacteriophage CP-T1

Author:

Fidelma Boyd E.1,Waldor Matthew K.1

Affiliation:

1. Division of Geographic Medicine and Infectious Diseases, Tufts-New England Medical Center and Tufts University School of Medicine, Boston, Massachusetts 02111

Abstract

ABSTRACT Horizontal transfer of genes encoding virulence factors has played a central role in the evolution of many pathogenic bacteria. The unexpected discovery that the genes encoding cholera toxin ( ctxAB ), the main cause of the profuse secretory diarrhea characteristic of cholera, are encoded on a novel filamentous phage named CTXΦ, has resulted in a renewed interest in the potential mechanisms of transfer of virulence genes among Vibrio cholerae . We describe here an alternative mechanism of cholera toxin gene transfer into nontoxigenic V. cholerae isolates, including strains that lack both the CTXΦ receptor, the toxin coregulated pilus (TCP), and attRS , the chromosomal attachment site for CTXΦ integration. A temperature-sensitive mutant of the V. cholerae generalized transducing bacteriophage CP-T1 (CP-T1ts) was used to transfer a genetically marked derivative of the CTX prophage into four nontoxigenic V. cholerae strains, including two V. cholerae vaccine strains. We demonstrate that CTXΦ transduced by CP-T1ts can replicate and integrate into these nontoxigenic V. cholerae strains with high efficiency. In fact, CP-T1ts transduces the CTX prophage preferentially when compared with other chromosomal markers. These results reveal a potential mechanism by which CTXΦ + V. cholerae strains that lack the TCP receptor may have arisen. Finally, these findings indicate an additional pathway for reversion of live-attenuated V. cholerae vaccine strains.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3