Fasciola hepatica Suppresses a Protective Th1 Response against Bordetella pertussis

Author:

Brady Miriam T.1,O’Neill Sandra M.2,Dalton John P.2,Mills Kingston H. G.1

Affiliation:

1. Infection and Immunity Group, Department of Biology, National University of Ireland, Maynooth, County Kildare,1 and

2. School of Biotechnology, Dublin City University, Glasnevin, Dublin 9,2Ireland

Abstract

ABSTRACT Fasciolosis, like other helminth infections, is associated with the induction of T-cell responses polarized to the Th2 subtype. Respiratory infection with Bordetella pertussis or immunization with a pertussis whole-cell vaccine (Pw) induces a potent Th1 response, which confers a high level of protection against bacterial challenge. We have used these two pathogens to examine bystander cross-regulation of Th1 and Th2 cells in vivo and provide evidence of immunomodulation of host T-cell responses to B. pertussis by a concomitant infection with Fasciola hepatica . Mice with a coinfection of F. hepatica and B. pertussis exhibited a Th2 cytokine profile in response to F. hepatica antigens, similar to those infected with F. hepatica alone. By contrast, the Th1 response to B. pertussis antigens was markedly suppressed and the bacterial infection was exacerbated following infection with F. hepatica . Furthermore, an established Th1 response induced in mice by infection with B. pertussis or by parenteral immunization with Pw was also suppressed following infection with F. hepatica . This immunomodulatory effect of B. pertussis -induced responses by F. hepatica infection is significantly reduced, but not completely abrogated, in IL-4 knockout mice. Our findings demonstrate that Th2-inducing parasites can exert bystander suppression of protective Th1 responses to infection or vaccination with a bacterial pathogen and that the modulation is mediated in part by IL-4 and, significantly, is effective at both the induction and effector stages of the Th1 response.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3