Affiliation:
1. Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
Abstract
ABSTRACT
Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called
nirA
operon. This operon contains the genes encoding nitrite reductase (
nirA
), a nitrate/nitrite transporter (frequently an ABC-type transporter;
nrtABCD
), and nitrate reductase (
narB
). In the model filamentous cyanobacterium
Anabaena
sp. strain PCC 7120, which can fix N
2
in specialized cells termed heterocysts, the
nirA
operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the
nirA
operon in
Anabaena
and found that a small open reading frame of unknown function,
alr0613
, can be cotranscribed with the operon. The next gene in the genome,
alr0614
(
narM
), showed an expression pattern similar to that of the
nirA
operon, implying correlated expression of
narM
and the operon. A mutant of
narM
with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both
narM
and
narB
mutants were impaired in the nitrate-dependent induction of the
nirA
operon, suggesting that nitrite is an inducer of the operon in
Anabaena
. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively.
IMPORTANCE
Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria assimilate nitrate, but regulation of the nitrate assimilation system varies in different cyanobacterial groups. In the N
2
-fixing, heterocyst-forming cyanobacteria, the
nirA
operon, which includes the structural genes for the nitrate assimilation system, is expressed in the presence of nitrate or nitrite if ammonium is not available to the cells. Here we studied the genes required for production of an active nitrate reductase, providing information on the nitrate-dependent induction of the operon, and found evidence for possible protein-protein interactions in the maturation of nitrate reductase and nitrite reductase.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献