Enhanced Killing of Candida albicans by Human Macrophages Adherent to Type 1 Collagen Matrices via Induction of Phagolysosomal Fusion

Author:

Newman Simon L.1,Bhugra Bindu1,Holly Angela1,Morris Randal E.1

Affiliation:

1. Division of Infectious Diseases, Department of Internal Medicine, and Department of Anatomy, Cell Biology, and Neurology, University of Cincinnati College of Medicine, Cincinnati, Ohio

Abstract

ABSTRACT Candida albicans , a component of the normal flora of the alimentary tract and mucocutaneous membranes, is the leading cause of invasive fungal disease in premature infants, diabetics, and surgical patients and of oropharyngeal disease in AIDS patients. As little is known about the regulation of monocyte/macrophage anti- Candida activity, we sought to determine if fungicidal activity might be regulated by extracellular matrix proteins to which monocytes/macrophages are adherent in vivo. Compared to monocyte/macrophages that adhered to plastic, human monocytes and monocyte-derived macrophages that adhered to type 1 collagen matrices, but not to fibronectin, vitronectin, or laminin, demonstrated a significant increase in candidacidal activity. The enhancement of monocyte fungicidal activity was maintained over a 4-h period, whereas macrophage fungicidal activity was maximum at 1 h. Although adherence of monocytes and macrophages to collagen matrices concomitantly enhanced the production of superoxide anion, only the fungicidal activity of collagen-adherent monocytes was partially blocked by superoxide dismutase and catalase. Remarkably, we found that only 10% of the phagosomes in C. albicans -infected macrophages that adhered to plastic fused with lysosomes. In contrast, 80% of yeast-containing phagosomes of collagen-adherent macrophages fused with lysosomes. These data suggest that nonoxidative mechanisms are critical for human macrophage anti- Candida activity and that C. albicans pathogenicity is mediated, in part, by its ability to inhibit phagolysosomal fusion in macrophages.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3