Deletion of the SSK1 Response Regulator Gene in Candida albicans Contributes to Enhanced Killing by Human Polymorphonuclear Neutrophils

Author:

Du Chen1,Calderone Richard1,Richert John1,Li Dongmei1

Affiliation:

1. Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, D.C

Abstract

ABSTRACT The isolation and partial functional characterization of the two-component response regulator SSK1 gene of Candida albicans was previously reported. Compared to wild-type (CAF2-1) and gene-reconstituted (SSK23) strains, the ssk1 null strain (SSK21) was avirulent in a murine model of hematogenously disseminated candidiasis and less able to adhere to human esophageal cells. More recent data indicate that SSK21 is sensitive to 4 to 8 mM H 2 O 2 in vitro than CAF2-1 and SSK23. Furthermore, microarray studies indicate that the regulation of two classes of genes, those encoding cell wall functions and stress adaptation, are altered in the ssk1 mutant. In the present study, the susceptibility of strains CAF2-1, SSK21, and SSK23 to killing by human polymorphonuclear neutrophils (PMNs) was assessed. Results are also described for a newly constructed ssk1 mutant (SSK24) in which the URA3 gene is integrated into its native locus. Our results indicate that killing of SSK21 and SSK24 was significantly greater than that of CAF2-1 and SSK23 ( P < 0.01). In order to determine why Ssk1p at least partially protects the organism against the killing activity of human PMNs, we compared the signal transduction activity and the inflammatory response gene profiles of PMNs infected with either the wild type or the ssk1 mutant. Phosphorylation of the mitogen-activated protein kinases p42/44 and p38 from neutrophils infected with either CAF2-1 (wild type) or SSK21 ( ssk1/ssk1 ) was similar, while expression and phosphorylation of the JNK mitogen-activated protein kinase was not observed following infection with either strain. On the other hand, we observed an upregulation of seven inflammatory response genes in PMNs infected with the SSK21 mutant only, while an increase in interleukin-10 expression was measured in PMNs infected with either strain. Downregulation of interleukin-2 was observed in PMNs infected with either strain. Verification of the transcriptional profiling was obtained by reverse transcription-PCR for three of the genes that were upregulated in neutrophils infected with the ssk1 mutant. Also, the sensitivity of strain SSK21 to human defensin-1, one of the nonoxidative, antimicrobial peptides of PMNs, was greater than that of CAF2-1, demonstrating that nonoxidative killing in PMNs may contribute to the increased susceptibility of the ssk1 mutant. Our results indicate that the Ssk1p response regulator protein may provide at least partial adaptive functions for the survival of C. albicans following its encounter with human neutrophils.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3