Inhibition of IκB Kinase by a New Class of Retinoid-Related Anticancer Agents That Induce Apoptosis

Author:

Bayon Yolanda1,Ortiz Maria A.1,Lopez-Hernandez Francisco J.1,Gao Feng1,Karin Michael2,Pfahl Magnus13,Piedrafita F. Javier1

Affiliation:

1. Sidney Kimmel Cancer Center

2. Department of Pharmacology, University of California-San Diego School of Medicine, San Diego, California

3. Maxia Pharmaceuticals

Abstract

ABSTRACT The transcription factor NF-κB is overexpressed or constitutively activated in many cancer cells, where it induces expression of antiapoptotic genes correlating with resistance to anticancer therapies. Small molecules that inhibit the NF-κB signaling pathway could therefore be used to induce apoptosis in NF-κB-overexpressing tumors and potentially serve as anticancer agents. We found that retinoid antagonist MX781 inhibited the activation of NF-κB-dependent transcriptional activity in different tumor cell lines. MX781 was able to completely inhibit tumor necrosis factor alpha-mediated activation of IκB kinase (IKK), the upstream regulator of NF-κB. Inhibition of IKK activity resulted from direct binding of MX781 to the kinase, as demonstrated by in vitro inhibition studies. Two other molecules, MX3350-1 and CD2325, which are retinoic acid receptor gamma-selective agonists, were capable of inhibiting IKK in vitro, although they exerted variable inhibition of IKK and NF-κB activities in intact cells in a cell type-specific manner. However, N -(4-hydroxyphenyl)-retinamide, another apoptosis-inducing retinoid, and retinoic acid as well as other nonapoptotic retinoids did not inhibit IKK. Inhibition of IKK by the retinoid-related compounds and other small molecules correlated with reduced cell proliferation and increased apoptosis. Reduced cell viability was also observed after overexpression of an IKKβ kinase-dead mutant or the IκBα superrepressor. The induction of apoptosis by the retinoid-related molecules that inhibited IKK was dependent on caspase activity but independent of the retinoid receptors. Thus, the presence of an excess of retinoic acid or a retinoid antagonist did not prevent the inhibition of IKK activation by MX781 and CD2325, indicating a retinoid receptor-independent mechanism of action.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topical Cosmeceutical Retinoids;Cosmetic Dermatology;2022-02-04

2. A novel hypothesis for COVID-19 pathogenesis: Retinol depletion and retinoid signaling disorder;Cellular Signalling;2021-11

3. Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity;Nutrients;2021-05-18

4. Retinoic acids in oral precancer: Utility and challenges;Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology;2020-11

5. Retinoic acids in oral precancer: Utility and challenges;Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology;2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3