Comparison of Single- and Multilocus Genetic Diversity in the Protozoan Parasites Cryptosporidium parvum and C. hominis

Author:

Widmer Giovanni1,Lee Yongsun1

Affiliation:

1. Tufts Cummings School of Veterinary Medicine, Division of Infectious Diseases, 200 Westboro Road, North Grafton, Massachusetts 01536

Abstract

ABSTRACT The genotyping of numerous isolates of Cryptosporidium parasites has led to the definition of new species and a better understanding of the epidemiology of cryptosporidiosis. A single-locus genotyping method based on the partial sequence of a polymorphic sporozoite surface glycoprotein gene ( GP60 ) has been favored by many for surveying Cryptosporidium parvum and C. hominis populations. Since genetically distinct Cryptosporidium parasites recombine in nature, it is unclear whether single-locus classifications can adequately represent intraspecies diversity. To address this question, we investigated whether multilocus genotypes of C. parvum and C. hominis cluster according to the GP60 genotype. C. hominis multilocus genotypes did not segregate according to this marker, indicating that for this species the GP60 sequence is not a valid surrogate for multilocus typing methods. In contrast, in C. parvum the previously described “anthroponotic” genotype was confirmed as a genetically distinct subspecies cluster characterized by a diagnostic GP60 allele. However, as in C. hominis , several C. parvum GP60 alleles did not correlate with distinct subpopulations. Given the rarity of some C. parvum GP60 alleles in our sample, the existence of additional C. parvum subgroups with unique GP60 alleles cannot be ruled out. We conclude that with the exception of genotypically distinct C. parvum subgroups, multilocus genotyping methods are needed to characterize C. parvum and C. hominis populations. Unless parasite virulence is controlled at the GP60 locus, attempts to find associations within species or subspecies between GP60 and phenotype are unlikely to be successful.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3