The KAP1 Corepressor Functions To Coordinate the Assembly of De Novo HP1-Demarcated Microenvironments of Heterochromatin Required for KRAB Zinc Finger Protein-Mediated Transcriptional Repression

Author:

Sripathy Smitha P.1,Stevens Jessica1,Schultz David C.1

Affiliation:

1. Case Western Reserve University, Department of Pharmacology and Case Comprehensive Cancer Center, 10900 Euclid Avenue, Cleveland, Ohio 44106-4965

Abstract

ABSTRACT KAP1/TIF1β is proposed to be a universal corepressor protein for the KRAB zinc finger protein (KRAB-zfp) superfamily of transcriptional repressors. To characterize the role of KAP1 and KAP1-interacting proteins in transcriptional repression, we investigated the regulation of stably integrated reporter transgenes by hormone-responsive KRAB and KAP1 repressor proteins. Here, we demonstrate that depletion of endogenous KAP1 levels by small interfering RNA (siRNA) significantly inhibited KRAB-mediated transcriptional repression of a chromatin template. Similarly, reduction in cellular levels of HP1α/β/γ and SETDB1 by siRNA attenuated KRAB-KAP1 repression. We also found that direct tethering of KAP1 to DNA was sufficient to repress transcription of an integrated transgene. This activity is absolutely dependent upon the interaction of KAP1 with HP1 and on an intact PHD finger and bromodomain of KAP1, suggesting that these domains function cooperatively in transcriptional corepression. The achievement of the repressed state by wild-type KAP1 involves decreased recruitment of RNA polymerase II, reduced levels of histone H3 K9 acetylation and H3K4 methylation, an increase in histone occupancy, enrichment of trimethyl histone H3K9, H3K36, and histone H4K20, and HP1 deposition at proximal regulatory sequences of the transgene. A KAP1 protein containing a mutation of the HP1 binding domain failed to induce any change in the histone modifications associated with DNA sequences of the transgene, implying that HP1-directed nuclear compartmentalization is required for transcriptional repression by the KRAB/KAP1 repression complex. The combination of these data suggests that KAP1 functions to coordinate activities that dynamically regulate changes in histone modifications and deposition of HP1 to establish a de novo microenvironment of heterochromatin, which is required for repression of gene transcription by KRAB-zfps.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3