Characterization of Axial and Proximal Histidine Mutations of the Decaheme Cytochrome MtrA from Shewanella sp. Strain ANA-3 and Implications for the Electron Transport System

Author:

Reyes Carolina1,Qian Fang23,Zhang Alissa2,Bondarev Sergey1,Welch Angel1,Thelen Michael P.3,Saltikov Chad W.1

Affiliation:

1. Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA

2. Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA

3. Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, California, USA

Abstract

ABSTRACT Extracellular respiration of solid-phase electron acceptors in some microorganisms requires a complex chain of multiheme c -type cytochromes that span the inner and outer membranes. In Shewanella species, MtrA, an ∼35-kDa periplasmic decaheme c -type cytochrome, is an essential component for extracellular respiration of iron(III). The exact mechanism of electron transport has not yet been resolved, but the arrangement of the polypeptide chain may have a strong influence on the capability of the MtrA cytochrome to transport electrons. The iron hemes of MtrA are bound to its polypeptide chain via proximal (CXXCH) and distal histidine residues. In this study, we show the effects of mutating histidine residues of MtrA to arginine on protein expression and extracellular respiration using Shewanella sp. strain ANA-3 as a model organism. Individual mutations to six out of nine proximal histidines in CXXCH of MtrA led to decreased protein expression. However, distal histidine mutations resulted in various degrees of protein expression. In addition, the effects of histidine mutations on extracellular respiration were tested using ferrihydrite and current production in microbial fuel cells. These results show that proximal histidine mutants were unable to reduce ferrihydrite. Mutations to the distal histidine residues resulted in various degrees of ferrihydrite reduction. These findings indicate that mutations to the proximal histidine residues affect MtrA expression, leading to loss of extracellular respiration ability. In contrast, mutations to the distal histidine residues are less detrimental to protein expression, and extracellular respiration can proceed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3