Global Transcription and Metabolic Flux Analysis of Escherichia coli in Glucose-Limited Fed-Batch Cultivations

Author:

Lemuth K.1,Hardiman T.2,Winter S.3,Pfeiffer D.2,Keller M. A.2,Lange S.1,Reuss M.2,Schmid R. D.1,Siemann-Herzberg M.2

Affiliation:

1. Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany

2. Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany

3. Institute of Stochastics and Applications, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

Abstract

ABSTRACT A time series of whole-genome transcription profiling of Escherichia coli K-12 W3110 was performed during a carbon-limited fed-batch process. The application of a constant feed rate led to the identification of a dynamic sequence of diverse carbon limitation responses (e.g., the hunger response) and at the same time provided a global view of how cellular and extracellular resources are used: the synthesis of high-affinity transporters guarantees maximal glucose influx, thereby preserving the phosphoenolpyruvate pool, and energy-dependent chemotaxis is reduced in order to provide a more economic “work mode.” σ S -mediated stress and starvation responses were both found to be of only minor relevance. Thus, the experimental setup provided access to the hunger response and enabled the differentiation of the hunger response from the general starvation response. Our previous topological model of the global regulation of the E. coli central carbon metabolism through the crp , cra , and relA / spoT modulons is supported by correlating transcript levels and metabolic fluxes and can now be extended. The substrate is extensively oxidized in the tricarboxylic acid (TCA) cycle to enhance energy generation. However, the general rate of oxidative decarboxylation within the pentose phosphate pathway and the TCA cycle is restricted to a minimum. Fine regulation of the carbon flux through these pathways supplies sufficient precursors for biosyntheses. The pools of at least three precursors are probably regulated through activation of the (phosphoenolpyruvate-)glyoxylate shunt. The present work shows that detailed understanding of the genetic regulation of bacterial metabolism provides useful insights for manipulating the carbon flux in technical production processes.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3