Farnesol remodels the peritoneal cavity immune environment influencing Candida albicans pathogenesis during intra-abdominal infection

Author:

Hargarten Jessica C.12ORCID,Vaughan Malcolm J.2,Lampe Anna T.13,Jones Riley M.14,Ssebambulidde Kenneth2,Nickerson Kenneth W.1ORCID,Williamson Peter R.2,Atkin Audrey L.1,Brown Deborah M.13

Affiliation:

1. School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA

2. Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA

3. Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA

4. College of Arts and Sciences, Doane University, Crete, Nebraska, USA

Abstract

ABSTRACT Candida albi c ans is a lifelong member of the mycobiome causing mucosal candidiasis and life-threatening, systemic, and intra-abdominal disease in immunocompromised and transplant patients. Despite the clinical importance of intra-abdominal candidiasis with mortality rates between 40% and 70%, the contribution of fungal virulence factors and host immune responses to disease has not been extensively studied. Secretion of the quorum-sensing molecule, farnesol, acts as a virulence factor for C. albicans during systemic infection, while inducing local, protective innate immune responses in oral models of infection. Previously, we reported that farnesol recruits macrophages to the peritoneal cavity in mice, suggesting a role for farnesol in innate immune responses. Here, we expand on our initial findings, showing that farnesol profoundly alters the peritoneal cavity microenvironment promoting innate inflammation. Intra-peritoneal injection of farnesol stimulates rapid local death of resident peritoneal cells followed by recruitment of neutrophils and inflammatory macrophages into the peritoneal cavity and peritoneal mesothelium associated with an early increase in chemokines followed by proinflammatory cytokines. These rapid inflammatory responses to farnesol significantly increase morbidity and mortality of mice with intra-abdominal candidiasis associated with increased formation of peritoneal adhesions, despite similar rates of fungal clearance from the peritoneal cavity and retro-peritoneal organs. C. albicans ddp3Δ/ddp3Δ knockout and reconstituted strains recapitulate these findings. This indicates that farnesol may be detrimental to the host during intra-abdominal infections. Importantly, our results highlight a need to understand how C. albicans virulence factors modulate the host immune response within the peritoneum, an exceedingly common site of Candida infection.

Funder

HHS | NIH | NIAID | Division of Intramural Research, National Institute of Allergy and Infectious Diseases

UNL | College of Arts and Sciences, University of Nebraska-Lincoln

University of Nebraska-Lincoln

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Absence of farnesol salvage in Candida albicans and probably in other fungi;Applied and Environmental Microbiology;2024-07-24

2. Physiological adventures in Candida albicans : farnesol and ubiquinones;Microbiology and Molecular Biology Reviews;2024-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3