Mobilization of the genetically engineered plasmid pHSV106 from Escherichia coli HB101(pHSV106) to Enterobacter cloacae in drinking water

Author:

Sandt C H1,Herson D S1

Affiliation:

1. School of Life and Health Sciences, University of Delaware, Newark 19716.

Abstract

We have used triparental matings to demonstrate transfer (mobilization) of the nonconjugative genetically engineered plasmid pHSV106, which contains the thymidine kinase gene of herpes simplex virus cloned into pBR322, from Escherichia coli HB101 to an environmental isolate of Enterobacter cloacae in sterile drinking water. This is the first demonstration of a two-step mobilization of a genetically engineered plasmid in any type of fresh water, including drinking water. Transfer was mediated by R plasmid R100-1 of E. coli ED2149(R100-1). Matings in drinking water at 15, 25, and 35 degrees C yielded recombinants, the number of which increased with increasing temperature. Numbers of recombinants obtained were 2 orders of magnitude lower than those obtained from matings in Trypticase soy broth. High concentrations of parental organisms (2.6 x 10(8) to 2.0 x 10(9) CFU/ml) were required. During 1 week of incubation in drinking water, number of parental organisms and recombinants resulting from mobilization remained constant in the absence of indigenous organisms and declined in their presence. Using oligonucleotide probes for the cloned foreign DNA (thymidine kinase gene) and plasmid vector DNA (ampicillin resistance gene), we demonstrated that both genes were transferred to E. cloacae in the mobilization process. In one recombinant selected for detailed study, the plasmids containing these genes differed in size from all forms of pHSV106 present in E. coli HB101(pHSV106), indicating that DNA rearrangement had occurred. This recombinant maintained its plasmids in unchanged form for 15 days in drinking water. A second rearrangement occurred during serial passage of this recombinant on selective media.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference34 articles.

1. American Public Health Association. 1985. Standard methods for the examination of water and wastewater 16th ed. American Public Health Association Inc. New York.

2. Survival and detection of bacteria in an aquatic environment;Amy P. S.;Appl. Environ. Microbiol.,1989

3. Antibiotic-resistant bacteria in drinking water;Armstrong J. L.;Appl. Environ. Microbiol.,1981

4. Transfer and occurrence of large mercury resistance plasmids in river epilithon;Bale M. J.;Appl. Environ. Microbiol.,1988

5. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system;Bolivar F.;Gene,1977

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3