Quantification of fungal hyphae in leaves of deciduous trees by automated image analysis

Author:

Daniel O,Schonholzer F,Zeyer J

Abstract

An optical method to quantify the fungal hyphae within decomposing leaves of deciduous trees was developed. The plant matrix was partially destroyed under hydrolytic conditions, and fungal hyphae and cellulose residues within the leaves were stained with Calcofluor M2R. Cellulose residues were subsequently depolymerized by cellulase, and fungal hyphae were separated from the remaining plant matrix with a pressurized air-water mixture. An image analysis program to quantify the fungal hyphae was written. The program included the recognition of fungal hyphae, the elimination of stomata from the images, and the measuring of lengths of fungal hyphae. The optical method was verified by a chemical method relying on glucosamine as an indicator of fungal biomass. The fungal biomass in leaves of Fagus silvatica and Quercus petraea at early states of decomposition was 0.2 to 0.4% of the leaf weight. The biomass reached a maximum within 2 to 4 weeks (optical method, 0.5 to 0.7%; chemical method, 1 to 1.4% of the initial leaf weight) and decreased thereafter.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference30 articles.

1. Analytical Vision Inc. 1992. Prism image analysis system user's manual version 3.0. Analytical Vision Inc. Raleigh N.C.

2. Changes in organic-chemical components and ingrowth of fungal mycelium in decomposing birch leaf litter as compared to pine needles;Berg B.;Pedobiologia,1984

3. Nondestructive quantification of growth and regression of mycelial cords using image analysis;Bolton R. G.;Binary,1991

4. Enzymic saccharification of pretreated agricultural wastes;El-Gammal S. M. A.;Zentralbl. Mikrobiol.,1988

5. Gerlach D. 1984. Botanische mikrotechnik. Georg Thieme Verlag Stuttgart.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3