Reversible Nerve Damage and Corneal Pathology in Murine Herpes Simplex Stromal Keratitis

Author:

Yun Hongmin,Rowe Alexander M.,Lathrop Kira L.,Harvey Stephen A. K.,Hendricks Robert L.

Abstract

ABSTRACTHerpes simplex virus type 1 (HSV-1) shedding from sensory neurons can trigger recurrent bouts of herpes stromal keratitis (HSK), an inflammatory response that leads to progressive corneal scarring and blindness. A mouse model of HSK is often used to delineate immunopathogenic mechanisms and bears many of the characteristics of human disease, but it tends to be more chronic and severe than human HSK. Loss of blink reflex (BR) in human HSK is common and due to a dramatic retraction of corneal sensory nerve termini in the epithelium and the nerve plexus at the epithelial/stromal interface. However, the relationship between loss of BR due to nerve damage and corneal pathology associated with HSK remains largely unexplored. Here, we show a similar retraction of corneal nerves in mice with HSK. Indeed, we show that much of the HSK-associated corneal inflammation in mice is actually attributable to damage to the corneal nerves and accompanying loss of BR and can be prevented or ameliorated by tarsorrhaphy (suturing eyelids closed), a clinical procedure commonly used to prevent corneal exposure and desiccation. In addition, we show that HSK-associated nerve retraction, loss of BR, and severe pathology all are reversible and regulated by CD4+T cells. Thus, defining immunopathogenic mechanisms of HSK in the mouse model will necessitate distinguishing mechanisms associated with the immunopathologic response to the virus from those associated with loss of corneal sensation. Based on our findings, investigation of a possible contribution of nerve damage and BR loss to human HSK also appears warranted.IMPORTANCEHSK in humans is a potentially blinding disease characterized by recurrent inflammation and progressive scarring triggered by viral release from corneal nerves. Corneal nerve damage is a known component of HSK, but the causes and consequences of HSK-associated nerve damage remain obscure. We show that desiccation of the corneal surface due to nerve damage and associated loss of BR severely exacerbates and prolongs inflammation-induced pathology in mice. Preventing corneal desiccation results in a milder and more transient HSK with variable scarring that mirrors HSK seen in most humans. We further show that nerve damage is reversible and regulated by CD4+T cells. Thus, we provide a mouse model that more closely resembles typical human HSK and suggest nerve damage is an important but largely overlooked factor in human disease.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference35 articles.

1. Herpes simplex virus epidemiology and ocular importance;Liesegang;Cornea,2001

2. Pathogenesis and management of herpes simplex virus keratitis;Tullo;Eye (London),2003

3. IFN-gamma regulates PECAM-1 expression and neutrophil infiltration into herpes simplex virus-infected mouse corneas;Tang;J. Exp. Med.,1996

4. Proinflammatory functions of IL-2 in herpes simplex virus corneal infection;Tang;J. Immunol.,1997

5. Role of IL-17 and Th17 cells in herpes simplex virus-induced corneal immunopathology;Suryawanshi;J. Immunol.,2011

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3