Strain selection during serial passage of Trichoplusia in nuclear polyhedrosis virus

Author:

Potter J N,Faulkner P,MacKinnon E A

Abstract

Two strains of a nuclear polyhedrosis virus (NPV) of Trichoplusia ni were isolated on the basis of plaque morphology. They are designated as MP (having greater than 30 polyhedra per nucleus) and FP (having fewer than 10 polyhedra per nucleus). Serial, undiluted passage of plaque, purified MP nonoccluded. Virus (NOV) in tissue culture led to the production of the FP phenotype detectable at passage 9. With continued serial, undiluted passage, FP became the predominant strain. Comparative growth curves showed that FP NOV are released faster than MP NOV. MP morphology was not observed after 14 serial, undiluted passages of plaque-purified FP. By the plaque neutralization assay, NOV from both strains of virus was neutralized by the homologus and heterologous antisera. The FP phenotype was observed when FP virus was grown in culture at 17, 22, and 27 C. Hence, the FP phenotype was not considered to be the result of temperature-inhibited crystallization of polyhedrin under standard tissue culture conditions. The NOV of both strains killed insects when injected directly into the hemocoele of T. ni larvae. Only MP inclusion bodies were virulent per os. The FP inclusion bodies fed to cabbage looper larvae did not kill, and no infectious agent could be detected in the hemolymph. Electron micrographs of MP polyhedra showed bundles of nucleocapsids of normal length within the polyhedra, whereas FP polyhedra contained heterogeneous, electron-dense material, which could account for their lack of pathogenicity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3