Biological properties and viral surface antigens of Burkitt lymphoma- and mononucleosis- derived strains of Epstein-Barr virus released from transformed marmoset cells

Author:

Miller G,Coope D,Niederman J,Pagano J

Abstract

Three strains of Epstein-Barr virus (EBV), two from Burkitt lymphoma (BL) and one from infectious mononucleosis (IM) were used to transform separate cultures of the same batch of primary marmoset leukocytes, and the viruses released from the transformants were compared. The three viruses shared properties of the transforming biotype of EBV, namely, stimulation of DNA synthesis and immortalization of cord blood leukocytes, and failure to induce "early antigen" in lymphoblast lines. All viruses produced more virus in transformed marmoset cells than in transformed human cells, as measured by the number of EBV genomes detected by complementary RNA/DNA hybridization, by virus capsid antigen expression, or by released virions and biologically active virus. Reference human sera and sera from primary EBV infections were used to compare the three virus strains in a virus neutralization test based on inhibition of stimulation of DNA synthesis. Specimens taken late in convalescence from patients with mononucleosis and sera from marmosets experimentally infected with virus from a patient with mononucleosis neutralized the homologous virus, as well as the two virus strains isolated from patients with BL. This finding indicates that viral antigens that elicit neutralizing antibodies are shared among the strains. However, in certain sera the neutralizing-antibody titer against one strain was consistently higher than against another strain. Furthermore, sera taken early after onset of IM contained low levels of neutralizing antibody against IM-derived virus, but failed to neutralize BL-derived virus. These latter findings suggest the existence of heterogeneity among surface antigens of EBVs. The results emphasize the biological and antigenic similarity of EBV isolates from BL and IM and do not suggest major subtype variations. It remains to be determined whether antigenic diversity such as described or virus genome variation detectable by other means is epidemiologically significant.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3