Characterization of the Cpx Regulon in Escherichia coli Strain MC4100

Author:

Price Nancy L.1,Raivio Tracy L.1

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9

Abstract

ABSTRACT The Cpx two-component signal transduction pathway of Escherichia coli mediates adaptation to envelope protein misfolding. However, there is experimental evidence that at least 50 genes in 34 operons are part of the Cpx regulon and many have functions that are undefined or unrelated to envelope protein maintenance. No comprehensive analysis of the Cpx regulon has been presented to date. In order to identify strongly Cpx-regulated genes that might play an important role(s) in envelope protein folding and/or to further define the role of the Cpx response and to gain insight into what makes a gene subject to strong Cpx regulation, we have carried out a uniform characterization of a Cpx-regulated lux reporter library in a single-strain background. Strongly Cpx-regulated genes encode proteins that are directly linked to envelope protein folding, localized to the envelope but uncharacterized, or involved in limiting the cellular concentration of noxious molecules. Moderately Cpx-regulated gene clusters encode products implicated in biofilm formation. An analysis of CpxR binding sites in strongly regulated genes indicates that while neither a consensus match nor their orientation predicts the strength of Cpx regulation, most genes contain a CpxR binding site within 100 bp of the transcriptional start site. Strikingly, we found that while there appears to be little overlap between the Cpx and Bae envelope stress responses, the σ E and Cpx responses reciprocally regulate a large group of strongly Cpx-regulated genes, most of which are uncharacterized.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 190 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3