Role of the Stable Signal Peptide and Cytoplasmic Domain of G2 in Regulating Intracellular Transport of the Junín Virus Envelope Glycoprotein Complex

Author:

Agnihothram Sudhakar S.12,York Joanne1,Nunberg Jack H.1

Affiliation:

1. Montana Biotechnology Center

2. Division of Biological Sciences, The University of Montana, Missoula, Montana 59812

Abstract

ABSTRACT Enveloped viruses utilize the membranous compartments of the host cell for the assembly and budding of new virion particles. In this report, we have investigated the biogenesis and trafficking of the envelope glycoprotein (GP-C) of the Junín arenavirus. The mature GP-C complex is unusual in that it retains a stable signal peptide (SSP) as an essential component in association with the typical receptor-binding (G1) and transmembrane fusion (G2) subunits. We demonstrate that, in the absence of SSP, the G1-G2 precursor is restricted to the endoplasmic reticulum (ER). This constraint is relieved by coexpression of SSP in trans , allowing transit of the assembled GP-C complex through the Golgi and to the cell surface, the site of arenavirus budding. Transport of a chimeric CD4 glycoprotein bearing the transmembrane and cytoplasmic domains of G2 is similarly regulated by SSP association. Truncations to the cytoplasmic domain of G2 abrogate SSP association yet now permit transport of the G1-G2 precursor to the cell surface. Thus, the cytoplasmic domain of G2 is an important determinant for both ER localization and its control through SSP binding. Alanine mutations to either of two dibasic amino acid motifs in the G2 cytoplasmic domain can also mobilize the G1-G2 precursor for transit through the Golgi. Taken together, our results suggest that SSP binding masks endogenous ER localization signals in the cytoplasmic domain of G2 to ensure that only the fully assembled, tripartite GP-C complex is transported for virion assembly. This quality control process points to an important role of SSP in the structure and function of the arenavirus envelope glycoprotein.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference67 articles.

1. Endoproteolytic Processing of the Lymphocytic Choriomeningitis Virus Glycoprotein by the Subtilase SKI-1/S1P

2. Borrow, P., and M. B. A. Oldstone. 1994. Mechanism of lymphocytic choriomeningitis virus entry into cells. Virology198:1-9.

3. Brown, M. S., and J. L. Goldstein. 1999. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl. Acad. Sci. USA96:11041-11048.

4. Buchmeier, M. J. 2002. Arenaviruses: protein structure and function. Curr. Top. Microbiol. Immunol.262:159-173.

5. Buchmeier, M. J., M. D. Bowen, and C. J. Peters. 2001. Arenaviruses and their replication, p. 1635-1668. In D. M. Knipe and P. M. Howley (ed.), Fields virology, vol. 2. Lippincott Williams & Wilkins, Philadelphia, Pa.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3