The Global Regulatory Cyclic AMP Receptor Protein (CRP) Controls Multifactorial Fluoroquinolone Susceptibility in Salmonella enterica Serovar Typhimurium

Author:

Kary Stefani C.1,Yoneda Joshua R. K.1,Olshefsky Stephen C.1,Stewart Laura A.1,West Steven B.1,Cameron Andrew D. S.1ORCID

Affiliation:

1. Department of Biology, University of Regina, Regina, Saskatchewan, Canada

Abstract

ABSTRACT Fluoroquinolone antibiotics are prescribed for the treatment of Salmonella enterica infections, but resistance to this family of antibiotics is growing. Here we report that loss of the global regulatory protein cyclic AMP (cAMP) receptor protein (CRP) or its allosteric effector, cAMP, reduces susceptibility to fluoroquinolones. A Δ crp mutation was synergistic with the primary fluoroquinolone resistance allele gyrA83 , thus able to contribute to clinically relevant resistance. Decreased susceptibility to fluoroquinolones could be partly explained by decreased expression of the outer membrane porin genes ompA and ompF with a concomitant increase in the expression of the ciprofloxacin resistance efflux pump gene acrB in Δ crp cells. Expression of gyrAB , which encode the DNA supercoiling enzyme GyrAB, which is blocked by fluoroquinolones, and expression of topA , which encodes the dominant supercoiling-relaxing enzyme topoisomerase I, were unchanged in Δ crp cells. Yet Δ crp cells maintained a more relaxed state of DNA supercoiling, correlating with an observed increase in topoisomerase IV ( parCE ) expression. Surprisingly, the Δ crp mutation had the unanticipated effect of enhancing fitness in the presence of fluoroquinolone antibiotics, which can be explained by the observation that exposure of Δ crp cells to ciprofloxacin had the counterintuitive effect of restoring wild-type levels of DNA supercoiling. Consistent with this, Δ crp cells did not become elongated or induce the SOS response when challenged with ciprofloxacin. These findings implicate the combined action of multiple drug resistance mechanisms in Δ crp cells: reduced permeability and elevated efflux of fluoroquinolones coupled with a relaxed DNA supercoiling state that buffers cells against GyrAB inhibition by fluoroquinolones.

Funder

Saskatchewan Health Research Foundation

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3