Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells

Author:

Caughey B1,Race R E1,Ernst D1,Buchmeier M J1,Chesebro B1

Affiliation:

1. Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840.

Abstract

Numerous studies have indicated that a modified proteinase K-resistant form of an endogenous brain protein, prion protein (PrP), is associated with scrapie infection in animals. This scrapie-associated PrP modification appears to occur posttranslationally in brain, but its molecular nature is not known. To learn about the normal PrP biosynthesis and whether it is altered by scrapie infection in vitro, we did metabolic labeling experiments with uninfected and scrapie-infected mouse neuroblastoma tissue culture cells. Pulse-chase labeling experiments indicated that, in both cell types, two major PrP precursors of 28 and 33 kilodaltons (kDa) were processed to mature 30- and 35- to 41-kDa forms. Endoglycosidase H, tunicamycin, and phospholipase treatments revealed that the 28- and 33-kDa precursors resulted from the addition of high-mannose glycans to a 25-kDa polypeptide containing a phosphatidylinositol moiety and that maturation of the precursors involved the conversion of the high-mannose glycans to hybrid or complex glycans. Treatments of the live cells with trypsin and phosphatidylinositol-specific phospholipase C indicated that the mature PrP species were expressed solely on the cell surface, where they were anchored by covalent linkage to phosphatidylinositol. Once on the cell surface, the major PrP forms had half-lives of 3 to 6 h. No differences in PrP biosynthesis were observed between the scrapie-infected versus uninfected neuroblastoma cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 303 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3