Mapping the termini and intron of the spliced immediate-early transcript of equine herpesvirus 1

Author:

Harty R N1,Colle C F1,Grundy F J1,O'Callaghan D J1

Affiliation:

1. Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130-3932.

Abstract

Equine herpesvirus 1 (EHV-1) has been shown to synthesize a 6.0-kilobase (kb) species of immediate-early (IE) mRNA in productively infected cells. This IE gene region maps within the outer portion (map units 0.79 to 0.83 and 0.96 to 1.00) of the two inverted repeat segments of the short genomic region, and elucidation of its DNA sequence has revealed multiple potential open reading frames (ORFs), including a major ORF of 4,461 nucleotides (F. J. Grundy, R. P. Baumann, and D. J. O'Callaghan, Virology 172:223-236, 1989). Analyses of IE polypeptides synthesized in EHV-1-infected cells (in vivo) and in vitro translation of hybrid-selected IE mRNA indicated that multiple species of IE proteins are encoded by this IE mRNA species. To address the nature of the 6.0-kb IE RNA species, Northern (RNA) blot hybridization, S1 nuclease mapping, and primer extension analyses have been employed. These data revealed that no major introns were detected within the body of the IE transcript. However, the IE mRNA was shown to be spliced at the 5' terminus, such that a 372-base intron containing two small ORFs (19 and 51 amino acids) was removed from the leader region of the transcript. This splicing event reduced the leader region from 625 to 253 bases. S1 and primer extension analyses of the 5' terminus of this transcript revealed that the transcription initiation site is located 24 to 26 bases downstream of the consensus TATAAA motif. The 3' transcription termination site was mapped by S1 nuclease analysis to approximately 10 to 20 bases downstream of the polyadenylation signal, AATAAA. The distance from the stop codon of the major ORF to the polyadenylation site is approximately 300 bases. Results from S1 nuclease experiments indicated that splicing does not occur at the 3' terminus. These studies indicated that the EHV-1 6.0-kb IE mRNA is spliced at the 5' terminus and that alternative splicing of this transcript may function in regulating translation of the IE mRNA species.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference70 articles.

1. Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediateearly gene expression;Ace C. I.;J. Virol.,1989

2. Characterization of herpes simplex virus type 1 RNA present in the absence of de novo protein synthesis;Anderson K. P.;J. Virol.,1980

3. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1987. Current protocols in molecular biology. Greene Publishing Associates and John Wiley & Sons Inc. New York.

4. Structure and genetic complexity of the genomes of herpesvirus defective-interfering particles associated with oncogenic transformation and persistent infection;Baumann R. P.;J. Virol.,1984

5. Cloning and fine mapping the DNA of equine herpesvirus type one defective interfering particles;Baumann R. P.;Virology,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3