The Absence of Caveolin-1 Increases Proliferation and Anchorage- Independent Growth by a Rac-Dependent, Erk-Independent Mechanism

Author:

Cerezo Ana1,Guadamillas Marta C.1,Goetz Jacky G.1,Sánchez-Perales Sara1,Klein Eric2,Assoian Richard K.2,del Pozo Miguel A.1

Affiliation:

1. Integrin Signaling Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, 28029 Madrid, Spain

2. Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084

Abstract

ABSTRACT Anchorage-independent growth (AIG) of cancer cells requires escape from integrin-mediated signals. A protein frequently downregulated in cancer, caveolin-1 (Cav1), mediates integrin control of several growth-regulatory pathways. We report that loss of Cav1 results in faster exit from quiescence and progress through the cell cycle, proliferation without anchorage to substrate, and absence of cyclin D1 downregulation upon serum deprivation or detachment. Surprisingly, this proliferative advantage is independent of Erk-mitogen-activated protein kinase signaling; instead, cyclin expression and cell cycle progression in the absence of Cav1 are driven by increased membrane order and Rac targeting. AIG was induced in Cav1-expressing cells by forced membrane targeting of Rac1 or by inhibiting Cav1-mediated internalization of plasma membrane ordered domains at which Rac1 accumulates. Restoring Rho activity, which is downregulated after loss of Cav1, antagonizes Rac1 and prevents cyclin D1 accumulation after serum starvation or loss of adhesion. Anchorage independence and increased proliferation in Cav1-deficient tumoral and null cells are thus due to an increased fraction of active Rac1 at membrane ordered domains. These results provide insight into the mechanisms regulating growth of cancer cells, which frequently lose Cav1 function.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3